

1

Electronic Countermeasures for Radar

ECE 4007 Senior Design Project

Section L04, MW6

Project Advisor, Dr. Weitnauer

Hunter Scott, Group Leader

Om Kapoor

Thomas Helton

Submitted

May 1, 2013

2

Table of Contents

Executive Summary ...3

1. Introduction ..4

1.1 Objective ...4

1.2 Motivation ...4

1.3 Background ...5

2. Project Description and Goals ..7

3. Technical Specification ..8

4. Design Approach and Details

4.1 Design Approach ..9

4.2 Radar Subsystem ...10

4.3 Signal Characterization ...12

4.4 Jammer Subsystem..13

4.5 Dashboard ...15

5. Schedule, Tasks, and Milestones...15

6. Results and Acceptance Testing ...15

7. Budget and Cost Analysis ..20

8. Conclusions and Future Work ..23

9. References ...24

Appendix A ...25

Appendix B ...26

Appendix C ...27

Appendix D……………………………………………………………………………...28

Appendix E………………………………………………………………………....……47

3

Executive Summary

The ECM team developed an electronic countermeasure module to allow hobbyists and

educators to demonstrate and innovate methods of defeating tactical radar. The system consisted

of a radar and an ECM module. The radar can image a 2D field of view that includes the ECM

module. The module can detect that it is being imaged, collect data about the radar and classify

it, and then attempt to jam the radar using techniques appropriate for the type of radar identified.

The radar was built using a modified version of a design originally pioneered at MIT. To

reduce cost, it outputs data through an audio jack, eliminating the requirement of an external

ADC. Instead, this data is captured directly from a PC sound card and analyzed using MATLAB

or Octave. The ECM module is designed around a USRP, an inexpensive software defined radio

that can be programmed using the open source framework GNU Radio. The frequency of

operation is 2.4 GHz, so standard directional Wi-Fi antennas can be used.

 The demonstration of this project involved imaging a 2D area with a radar and

showing that by activating the ECM module, false targets can be created. Using a simple object

tracker, the radar tracked incorrect information about the real target as well as incorrect

information about other false targets.

Current countermeasure units cost at least a million dollars, require high level security

clearances, and are unavailable to the majority of people. The ECM teams’ module has 50% of

the functionality of modern countermeasure modules at 0.1% of the cost.

4

Electronic Countermeasures for Radar

1. Introduction

 The Electronic Countermeasures for Radar (ECM) team designed and tested a module

that classifies and deceives radar using the principles of digital radio frequency memory

(DRFM). The team requested $380 to develop a prototype of the system consisting of both a

radar and a countermeasure module, $425 less than originally forecasted.

1.1 Objective

 The objective of the ECM team was to design, build, and test an electronic

countermeasure (ECM) module that uses the principles of DRFM to modify returning signals to

a radar system. A radar capable of operating on different frequencies and incorporating a simple

radar tracking algorithm was constructed to test the effectiveness of the ECM module. The team

designed the ECM module to identify the target radar’s type and frequency to determine the

appropriate jamming technique with which to counter. These techniques were based on the

concept of sending fake echoes back to the radar which are frequency or phase shifted to cause

the radar to incorrectly assess the range and direction of the target.

1.2 Motivation

 The motivation driving this project was to design a low cost radar and ECM module

aimed at hobbyists and educators. Since radar and radar countermeasures are so closely related,

educators often teach both concepts together. In the same way that the software defined radio

field has benefitted from the availability of low cost devices [1], it is hoped that a low cost ECM

module will spur innovation in a field previously relegated to large laboratories and companies.

5

1.3 Background

 Radar systems are designed to identify a target’s range, velocity, elevation (or altitude),

and angle (or azimuth). Many implementations of radar systems are used in defensive systems

for early warning, ground control intercept, airborne intercept, acquisition, and target tracking

[2]. Jamming techniques allow a user to avoid radar detection and the implementations include:

chaff (metallic strips for causing false signal returns), spot jamming (jamming power focused on

a single frequency), stealth material, sweep jamming, pulse jamming, and DRFM jamming [3].

 RADAR is defined as RAdio Detection And Ranging. Radar operates at various radio

frequencies and their classifications along with their radar wavelengths are shown in Figure 1.

Figure 1. Radar frequency ranges and wavelengths. [1]

The ECM group’s radar operates in the S band. The idea behind radar is to send a signal to a

target and listen for the echo (or reflection) from the target. Figure 2 below shows what a typical

pulsed radar waveform might look like and what the reflections off the target look like.

6

Figure 2. Typical pulsed radar waveform with reflections from target.

To calculate the wavelength (λ), the speed of light (3 x 10^8 meters/second) will be denoted by

“c” and the radar frequency “f” to gain the equation λ = c / f . The basic radar equation can be

seen in Figure 3, and the max range equation can be seen in Figure 4 [4].

Figure 3. Basic radar range equation.

Figure 4. Max radar range equation.

The principles behind DRFM take advantage of the assumptions a radar system makes

when identifying a target. The first assumption a radar makes is that the only possible reasons for

7

a shift in frequency, phase, amplitude, or polarization is due to a reflection off of a material with

a very different permittivity than air [2]. DRFM defeats this assumption by artificially shifting

any or all of those physical wave properties and sending them back to the radar [5]. This causes

the radar to make incorrect deductions about the material, velocity, and range of what it thinks

are reflections off of a surface. Another assumption that radar makes is that electronic

countermeasures used against it will not be able to keep up with the sliding time slot that it

samples in and that the countermeasure won’t be able to find the radar’s frequency precisely

enough. This was true before 1999, when DRFM systems first came into use [6]. With the

proliferation of high dynamic range ADCs, fast FPGAs, and more efficient processors, it is now

possible to very quickly and effectively find a radar’s frequency and keep up with its sampling

rate [7].

2. Project Description and Goals

 The ECM team constructed a radar and ECM module to demonstrate different techniques

of electronically countering radar signals. The ECM module has an interactive menu to select

the type of jamming technique to deploy. Users can program and edit how the radio in the ECM

module will characterize signals using Python scripts. The design project required $380 to build

the radar and ECM module that provides the following features:

● Interactive graphical user interface (GUI)

● Ability to detect and characterize radars

● Capability of deploying different countermeasure methods for jamming

● Costs less than $1400 to produce

8

3. Technical Specifications

 The two major components of the system are the radar and the ECM module. Table 1

displays the performance specifications for the radar and Table 2 displays the specifications for

the ECM module. The radar prototype consists of a breadboard attached to two antennas and a

computer system. Table 1 shows the effective range of the radar to be 70 m, a figure attain

through testing. As shown in Table 2, an output power of 100 mW ensures that the ECM module

can transmit pulses back to the radar at distances of up to and greater than the effective range of

the radar. The ECM module can also generate arbitrary waveforms, so it is possible to counter a

wide range of radar waveforms.

Table 1. Radar Specifications

Feature Specification

Dimensions 12x12x1 inches

Weight 2 pounds

Transmit Power 60 mW

Operating Frequency Range 2.4 GHz

Operation Distance Up to 70 m

Output Waveforms Pulse train, FM chirp

Software MATLAB and Python

Polarization Vertical or Left Hand Circular

9

Table 2. ECM Module Specifications

Feature Specification

Dimensions 12x8x2 inches

Weight 3 pounds

Transmit Power 100 mW

Operating Frequency Range 400-4400 MHz

Operation Distance Depends on radar sensitivity, 140 m average

Output Waveforms Arbitrary waveform generation

Software GNU Radio and Python

Polarization Vertical or Left Hand Circular

4. Design Approach and Details

4.1 Design Approach

System Overview

 The system demonstrated consists of two parts: a radar and an ECM module. The radar is

used to collect range and velocity information from targets moving in front of it. It is used to

observe the effectiveness of the ECM module. The ECM module causes the radar to display

incorrect information about the targets it is illuminating by employing a variety of tactics. It has

the capability to transmit and receive in the radar’s frequency range and perform signal analysis

to characterize the type of radar that it is encountering. Once it learns about the radar, it can

switch modes and select the appropriate countermeasure and begin to jam. Figure 5 below shows

the relationship between the radar and ECM module.

10

Figure 5. Block diagram of the radar and ECM module layouts.

Radar Subsystem

The radar subsystem consists of a standard radar platform originally developed at MIT. The

radar system diagram can be seen in Figure 6 below.

Figure 6. Block diagram of radar system components.

A voltage-controlled oscillator (VCO) generates a linear frequency modulated continuous wave

at 2.4 GHz which is sent to the transmit antenna. The receive side amplifies the signal it observes

11

on the receive antenna and mixes it down to baseband using the VCO as the local oscillator. This

signal is then adjusted to have a 20 KHz bandwidth and a correct amplitude to be suitable for

capture from a PC stereo sound card. The right channel is used to input the receive data and the

left channel is used to sync the VCO. The board has test points at the VCO output, the right

channel output, and the 12V supply line. The VCO output and right channel output test points

were probed using a spectrum analyzer to confirm correct functionality. The 12V supply line was

probed with an oscilloscope to ensure the noise from the power supply was within acceptable

limits. Once successful, the radar was tested using cables within inline attenuators on the TX and

RX SMA connectors using a spectrum analyzer and a signal generator. Once it was determined

that the radar could both transmit and receive signals correctly in the lab, directional antennas

were attached and the radar was taken outside to image people walking around. The data

generated in this test was sent to MATLAB to visualize range vs time. The Cartesian-temporal

plot can be seen in Figure 7 below.

Figure 7. Cartesian-temporal plot of time vs velocity.

12

The data is also visible in real-time showing range and return signal strength, which is denoted

with false color.

Signal Characterization

The ECM module receives incident radar waves and must determine the type of radar it is

observing. This feature was implemented but never tested. It first attempts to detect certain

polarizations of the wave using antenna diversity by comparing the RSSI of a vertically polarized

antenna and a left hand circularly polarized antenna, both with the same gain. Table 3 shows the

polarization loss experienced if the radar is transmitting with a different polarization than the

ECM module is receiving on.

Table 3. Polarization Loss

Transmit Antenna

Polarization

Receive Antenna

Polarization

Percent Lost

Vertical Vertical 0

Vertical Slant (45 or 135 degrees) 50

Vertical or Horizontal Horizontal or Vertical 100

Vertical Circular (right or left-hand) 50

Horizontal Horizontal 0

Horizontal Slant (45 or 135 degrees) 50

Horizontal Circular (right or left-hand) 50

Circular (left-handed) Circular (left-handed) 0

Once polarization is determined, the ECM module uses the appropriate antenna to sample the

wave and look for a continuous wave or a pulsed wave. Next, it looks for deliberate modulation.

13

It detects both of these features by decomposing the frequency components using Fourier

analysis and determines the time/frequency relationship of pulses to one another using wavelet

analysis. If modulation is detected, the ECM module demodulates the samples and looks for

pulse compression. Once all of this critical information about the radar is acquired, the ECM

module attempts to classify the type of radar it is encountering. If it has seen the radar before, it

can attempt to jam the radar using known weaknesses in the implementation. Otherwise, if it has

not seen the radar before, it will continue to collect information about the radar for later analysis

and will alert the user to the situation. It does not attempt to jam the radar in this instance, in case

target-on-jam systems are in use. The signal characterizer in the ECM module is written in

Python using GNU Radio. Fourier and wavelet analysis is performed within GNU Radio to

characterize the radar signature. The characterization component of this project was never tested,

however preliminary code can be found in Appendix D.

Jammer Subsystem

Once the target radar is known, this subsystem actually performs the jamming. Table 4 shows the

type of radar detected and the action performed by the jammer subsystem.

Table 4. Jammer Response to Radar Type

Type of Radar Jammer Response

Pulsed Identify range gate, transmit pulses back

Pulse-Doppler Identify range gate, transmit frequency

shifted pulses back

Pulse compression Identify range gate, transmit frequency

shifted chirps back

Other Collect data, do not attempt to jam.

14

The jammer subsystem of the ECM consists of a universal software radio peripheral (USRP),

antennas, and a computer. It is controlled using GNU Radio, which is a framework that allows

the user to write Python scripts to define how the USRP transmits and receives. It also allows the

user to perform signal analysis. Figure 9 below shows the architecture of the USRP.

Figure 9. Block diagram of the USRP components.

Because the radar and ECM module both operate in the 2.4 GHz band, care must be taken to

ensure that Wi-Fi doesn’t interfere with the system and that the system doesn’t interfere with Wi-

Fi. The demonstration took place outdoors if possible to limit the effects of Wi-Fi, however we

were able to successfully test some features inside. The frequency of both systems was shifted to

an open Wi-Fi channel in the ISM band covering 2.4-2.5 GHz. The use of directional antennas

on both the radar and ECM module further limited potential interference problems. Because the

USRP daughterboard bandwidth was only 40 MHz, the radar was modified to sweep over 40

MHz by reducing the amplitude of the signal going into the VCO to 25% of the original

amplitude.

15

Dashboard

To command and control the ECM module, a simple GUI was developed to let the user visualize

the signal that is being analyzed as well as observe the status of the ECM and execute other

countermeasure options. A screenshot of the GUI can be seen below in Figure 10.

Figure 10. GUI for the ECM module.

5. Schedule Tasks and Milestones

The ECM team tested, researched, and implemented the proposed prototype and

developed it over 3 months. The table in Appendix A displays all the major milestones listing

their difficulty level and persons assigned to the task. Appendix B shows a Gantt chart of all

major milestones. Appendix C shows a detailed Gantt Chart with a timeline of all the tasks that

were performed, their difficulty and the persons performing these tasks.

6. Results and Acceptance Testing

The demonstration consisted of a portable, mountable radar connected to a computer and

an ECM module connected to a computer. The radar and ECM modules were placed 10 meters

16

from each other. The radar was activated and started transmitting. Normal operation was

demonstrated by having volunteers walk back and forth in front of the radar while the real time

processor that was written displayed the correct plot. Then, the ECM sent modified return pulses

back to the radar, causing the radar to report incorrect target information. The demonstration of

the project took place in an open space, and the poster session demo took place at the senior

design expo outdoors near the McCamish Pavillion. The results of the demonstration were

viewable on the computer screens via a custom designed GUI.

As per our project specifications, we were able to demonstrate all three types of Radar

jamming, namely:

1. Pure Noise Jamming

Pure noise jamming was accomplished by broadcasting a 2.4 GHz Gaussian noise signal

at a high power. This code can be found in Appendix D. Noise saturates any sensitivity of the

radar and makes it impossible to observe the reflections off of the real target occurring at much

lower amplitudes. The disadvantage of this technique is that is requires a large amplifier to work

well and disturbs other users of the spectrum. It can also be dangerous in a military scenario if

the enemy is using a target-on-jam system that tracks large signal sources. Figure 11 shows the

capture of the radar without any type of jamming taking place. Figure 12 shows the plot obtained

when the jammer was activated.

17

Figure 11. Original radar plot.

Figure 12. Result of noise jamming.

2. DRFM Jamming

DRFM jamming was the main focus of this project and was accomplished by several

means. The first version synthesized a frequency modulated continuous wave onboard the USRP

18

and broadcasted it towards the radar. However, performance was low and it was difficult to pick

out the fake reflection. The second version involved recording radar reflections directly to

memory by connecting the USRP via cable to one of the radar cantennas through an amplifier

and then activating the radar. Because the raw data is guaranteed to be the same thing that the

radar sees, broadcasting back the recording worked much better. The second version of the code

is available in Appendix D. Figure 13 is the capture by the Radar upon activating the USRP to

produce DRFM Jamming.

Figure 13. Result of DRFM Jamming.

3. Clutter Rejection Jamming

Clutter rejection algorithms are normally designed to filter out reflections from objects

that the user is not interested in. The clutter rejection algorithm that was implemented for the

MIT radar filters out objects that are not moving and does magnitude normalization. This clutter

rejection jamming technique, which causes the clutter rejection algorithm to actually add noise to

the plot, was discovered by accident during experimentation. Further investigation is required to

19

fully understand what is happening, but we believe that we are exploiting a poor choice of filter

bandwidth in the clutter rejection algorithm. Figure 14 shows the radar capture with clutter

rejection jamming before the clutter rejection algorithm on the PC has been run. Figure 15 shows

the radar capture with clutter rejection jamming after the clutter rejection algorithm on the PC

has been run. Note that the apparent noise has increased.

Figure 14. Radar capture during clutter rejection jamming before the clutter rejection algorithm

is applied.

20

Figure 15. Radar capture during clutter rejection jamming after the clutter rejection algorithm is

applied.

7. Cost Analysis

The budget for the Senior Design project was $360. The main cost associated with the

production of the ECM module was the cost of the USRP. That cost was waived as a team

member had the required part. The cost of the antenna was reduced because it was possible to

use antennas built from coffee cans which work well for this application and cost $6. The cost of

the software development required for processing and modifying incoming radio waves is

negligible because it is either open source or the ECM team wrote it. Table 5 shows the

breakdown of costs for parts required for the prototype.

21

Table 5. Component costs for prototype

Part Description Quantity Unit Price($) Total Price($)

USRP B100 1 $640 $640

Antennas 4 $6 $24

USRP SBX

Daughterboard

1 $475 $475

Cantenna RADAR 1 $300 $300

Three engineers were required to complete the design and development of the ECM module. A

breakdown of the number of hours that were put in by each engineer during development is

shown in Table 6.

Table 6. Development hours per engineer

Task Hours

Class 20

Weekly Meetings 10

Research 20

Presentation 1

Assembly 5

Testing 5

Software Development 10

Total 71

Labor costs are calculated based on the above table and assuming an average salary of $27 per

hour for each engineer. Considering the number of hours required for development of the project,

labor costs amount to $5751. Assuming fringe benefits of 30% of labor and an overhead of 120%

of labor and material, the total development cost for the ECM module is shown in Table 7 below.

22

Table 7. Total Development Costs

Component Cost

Labor $5751.00

Parts $1439.00

Fringe Benefits $1725.30

Overhead $8479.20

Total Development cost $17270.50

The production run will consist of an approximation of five units being sold per week over a

period of four years. This amounts to 1080 units being sold over a span of four years. There will

be a discount of 5% being offered to any educational organization seeking to procure more than

50 units of the product. The selling price will be marked up by 6.71% when compared to the cost

price and will be sold at a price of $3200 after taking into account fringe benefits and overhead.

This amounts to a profit of $216.50 per unit sold and a profit of $56.50 per unit when sold in

bulk. Assuming that all units were bought individually, this amounts to a total profit of $233,820

in a span of 4 years. The marked price is substantially lower than any ECM module available in

the market and the first of its kind with respect to domestic use. Assuming that our ECM module

is in production, the time taken to assemble and test the product amounts to 1.5 hours, Table 8

shows a breakdown of profit per unit.

23

Table 8. Breakdown of profit per unit

Expense or Income Component per Unit Cost per Unit

Parts $1439

Assembly Labor $14

Test Labor $27

Fringe Benefits $12.3

Subtotal $1356.3

Overhead $1627.2

Total Input Cost $2983.5

Selling Price $3200.00

Profit $216.50

8. Conclusions and Future Work

The ECM team was able to build and demonstrate a radar and an accompanying electronic

countermeasure module. It will allow hobbyists and educators to demonstrate and innovate

methods of defeating tactical radar. Some features were not tested, and offer an area for future

work. A circularly polarized antenna was designed and simulated, but never fabricated or tested.

This can be found in Appendix E. Future improvements could include more sophisticated ECM

techniques and better radar characterization. Because the system was designed to be open source

and flexible, it lends itself extremely well to being modified, and indeed is intended to be

modified by the end user. It is this flexibility that will help speed and enhance the learning

process in educating the next generation of radar engineers.

24

9. References

[1] Katz, S.; Flynn, J.; , "Using software defined radio (SDR) to demonstrate concepts in

communications and signal processing courses," Frontiers in Education Conference, 2009. FIE

'09. 39th IEEE , vol., no., pp.1-6, 18-21 Oct. 2009

[2] Penley, Bill, Early Radar History – an Introduction”. Cambridge, MA: MIT Press, 2002.

[3] Navy, “Introduction to Naval Weapons Engineering”. Washington, DC: Office of

Headquarters Operations, 2005.

[4] G. R. Curry, Pocket Radar Guide – Key Radar Facts, Equations, and Data. Raleigh, NC:

SciTech Publishing, Inc., 2010. Available online:

http://www.knovel.com/web/portal/browse/display?_EXT_KNOVEL_DISPLAY_bookid=4419

[5] Sun Guoying; Li Yunjie; Gao Meiguo; , "An Improved DRFM System Based on Digital

Channelized Receiver," Image and Signal Processing, 2009. CISP '09. 2nd International

Congress on , vol., no., pp.1-5, 17-19 Oct. 2009

[6] Watson, Charles, “A Comparison of DDS and DRFM Techniques in the Generation of

“Smart Noise” Jamming Waveforms”, M.S. thesis, Naval Postgraduate School, Monterey, CA,

1996.

[7] SPEC, ADEP T4000. July 24, 2012. [Online]. Available:

http://www.spec.com/content/view/91/1/. [Accessed: Jan. 22, 2013].

[8] Small Business Innovation Research, Navy Direct Digital Radio Frequency Conversion

Digital Radio Frequency Memory. Jan. 2, 2013. [Online]. Available:

http://www.dodsbir.net/sitis/display_topic.asp?Bookmark=43277. [Accessed: Jan. 22, 2013].

[9] Dr. Gregory Charvat’s Personal Website. Nov. 6, 2011. [Online]. Available:

http://www.glcharvat.com/Dr._Gregory_L._Charvat_Projects/Cantenna_Radar.html. [Accessed:

Feb. 6, 2013].

[10] Ettus Research, “About Ettus Research.” [Online]. Available: http://ettus.com/site/about.

[Accessed: Feb. 6, 2013].

http://ettus.com/site/about
http://ettus.com/site/about

25

Appendix A

Task Name Task Lead Risk Level

Planning, Presentation and

Documentation

All Low

 TRP All Low

 Project Proposal All Low

 Parts Ordering HS Low

 PDR Presentation All Low

 Final Project Presentation All Low

 Final Project

Documentation

All Medium

 Final Project Report All Medium

RADAR tasks All Medium

 Testing Receiver and

Transmitter

HS, OK Medium

 Testing Software Processing

Capabilities

HS, TH High

ECM Module tasks All Medium

 Signal attenuation and

characterization software

OK, TH High

 Testing Receiver and

Transmitter

HS, TH Medium

GUI development and testing All Medium

Comprehensive ECM and

radar test

All Medium

26

Appendix B

27

Appendix C

28

Appendix D - Code

NoiseJammer.py

#!/usr/bin/env python

from gnuradio import analog

from gnuradio import eng_notation

from gnuradio import gr

from gnuradio import uhd

from gnuradio.eng_option import eng_option

from gnuradio.gr import firdes

from gnuradio.wxgui import forms

from grc_gnuradio import wxgui as grc_wxgui

from optparse import OptionParser

import wx

class top_block(grc_wxgui.top_block_gui):

 def __init__(self):

 grc_wxgui.top_block_gui.__init__(self, title="Top Block")

 _icon_path = "/usr/share/icons/hicolor/32x32/apps/gnuradio-grc.png"

 self.SetIcon(wx.Icon(_icon_path, wx.BITMAP_TYPE_ANY))

 ##

 # Variables

 ##

 self.variable_slider_2 = variable_slider_2 = .1

 self.variable_slider_1 = variable_slider_1 = 32

 self.variable_slider_0_0 = variable_slider_0_0 = 25

 self.variable_slider_0 = variable_slider_0 = 0

 self.test_freq = test_freq = variable_slider_0_0

 self.samp_rate = samp_rate = 21e6

 self.gain = gain = variable_slider_1

 self.delay_length = delay_length = variable_slider_0

 self.amplitude = amplitude = variable_slider_2

 ##

 # Blocks

 ##

 _variable_slider_0_0_sizer = wx.BoxSizer(wx.VERTICAL)

 self._variable_slider_0_0_text_box = forms.text_box(

 parent=self.GetWin(),

 sizer=_variable_slider_0_0_sizer,

 value=self.variable_slider_0_0,

 callback=self.set_variable_slider_0_0,

29

 label="Radar Chirp Frequency",

 converter=forms.float_converter(),

 proportion=0,

)

 self._variable_slider_0_0_slider = forms.slider(

 parent=self.GetWin(),

 sizer=_variable_slider_0_0_sizer,

 value=self.variable_slider_0_0,

 callback=self.set_variable_slider_0_0,

 minimum=25,

 maximum=100,

 num_steps=100,

 style=wx.SL_HORIZONTAL,

 cast=float,

 proportion=1,

)

 self.GridAdd(_variable_slider_0_0_sizer, 11, 10, 1, 9)

 _variable_slider_2_sizer = wx.BoxSizer(wx.VERTICAL)

 self._variable_slider_2_text_box = forms.text_box(

 parent=self.GetWin(),

 sizer=_variable_slider_2_sizer,

 value=self.variable_slider_2,

 callback=self.set_variable_slider_2,

 label="Chirp Amplitude",

 converter=forms.float_converter(),

 proportion=0,

)

 self._variable_slider_2_slider = forms.slider(

 parent=self.GetWin(),

 sizer=_variable_slider_2_sizer,

 value=self.variable_slider_2,

 callback=self.set_variable_slider_2,

 minimum=0,

 maximum=1,

 num_steps=10,

 style=wx.SL_HORIZONTAL,

 cast=float,

 proportion=1,

)

 self.Add(_variable_slider_2_sizer)

 _variable_slider_1_sizer = wx.BoxSizer(wx.VERTICAL)

 self._variable_slider_1_text_box = forms.text_box(

 parent=self.GetWin(),

 sizer=_variable_slider_1_sizer,

30

 value=self.variable_slider_1,

 callback=self.set_variable_slider_1,

 label="Output Gain",

 converter=forms.float_converter(),

 proportion=0,

)

 self._variable_slider_1_slider = forms.slider(

 parent=self.GetWin(),

 sizer=_variable_slider_1_sizer,

 value=self.variable_slider_1,

 callback=self.set_variable_slider_1,

 minimum=0,

 maximum=32,

 num_steps=31,

 style=wx.SL_HORIZONTAL,

 cast=float,

 proportion=1,

)

 self.GridAdd(_variable_slider_1_sizer, 12, 10, 1, 9)

 _variable_slider_0_sizer = wx.BoxSizer(wx.VERTICAL)

 self._variable_slider_0_text_box = forms.text_box(

 parent=self.GetWin(),

 sizer=_variable_slider_0_sizer,

 value=self.variable_slider_0,

 callback=self.set_variable_slider_0,

 label="Delay Length",

 converter=forms.int_converter(),

 proportion=0,

)

 self._variable_slider_0_slider = forms.slider(

 parent=self.GetWin(),

 sizer=_variable_slider_0_sizer,

 value=self.variable_slider_0,

 callback=self.set_variable_slider_0,

 minimum=0,

 maximum=710000,

 num_steps=1000,

 style=wx.SL_HORIZONTAL,

 cast=int,

 proportion=1,

)

 self.GridAdd(_variable_slider_0_sizer, 10, 10, 1, 9)

 self.uhd_usrp_sink_0 = uhd.usrp_sink(

 device_addr="",

31

 stream_args=uhd.stream_args(

 cpu_format="fc32",

 channels=range(1),

),

)

 self.uhd_usrp_sink_0.set_samp_rate(samp_rate)

 self.uhd_usrp_sink_0.set_center_freq(2.28e9, 0)

 self.uhd_usrp_sink_0.set_gain(10, 0)

 self.gr_vco_f_0 = gr.vco_f(samp_rate, 6.28e6, 1)

 self.gr_hilbert_fc_0 = gr.hilbert_fc(64)

 self.analog_sig_source_x_0 = analog.sig_source_f(samp_rate,

analog.GR_SAW_WAVE, variable_slider_0_0, amplitude, 0)

 ##

 # Connections

 ##

 self.connect((self.analog_sig_source_x_0, 0), (self.gr_vco_f_0, 0))

 self.connect((self.gr_vco_f_0, 0), (self.gr_hilbert_fc_0, 0))

 self.connect((self.gr_hilbert_fc_0, 0), (self.uhd_usrp_sink_0, 0))

 def get_variable_slider_2(self):

 return self.variable_slider_2

 def set_variable_slider_2(self, variable_slider_2):

 self.variable_slider_2 = variable_slider_2

 self._variable_slider_2_slider.set_value(self.variable_slider_2)

 self._variable_slider_2_text_box.set_value(self.variable_slider_2)

 self.set_amplitude(self.variable_slider_2)

 def get_variable_slider_1(self):

 return self.variable_slider_1

 def set_variable_slider_1(self, variable_slider_1):

 self.variable_slider_1 = variable_slider_1

 self.set_gain(self.variable_slider_1)

 self._variable_slider_1_slider.set_value(self.variable_slider_1)

 self._variable_slider_1_text_box.set_value(self.variable_slider_1)

 def get_variable_slider_0_0(self):

 return self.variable_slider_0_0

 def set_variable_slider_0_0(self, variable_slider_0_0):

 self.variable_slider_0_0 = variable_slider_0_0

32

 self.set_test_freq(self.variable_slider_0_0)

 self._variable_slider_0_0_slider.set_value(self.variable_slider_0_0)

 self._variable_slider_0_0_text_box.set_value(self.variable_slider_0_0)

 self.analog_sig_source_x_0.set_frequency(self.variable_slider_0_0)

 def get_variable_slider_0(self):

 return self.variable_slider_0

 def set_variable_slider_0(self, variable_slider_0):

 self.variable_slider_0 = variable_slider_0

 self.set_delay_length(self.variable_slider_0)

 self._variable_slider_0_slider.set_value(self.variable_slider_0)

 self._variable_slider_0_text_box.set_value(self.variable_slider_0)

 def get_test_freq(self):

 return self.test_freq

 def set_test_freq(self, test_freq):

 self.test_freq = test_freq

 def get_samp_rate(self):

 return self.samp_rate

 def set_samp_rate(self, samp_rate):

 self.samp_rate = samp_rate

 self.analog_sig_source_x_0.set_sampling_freq(self.samp_rate)

 self.uhd_usrp_sink_0.set_samp_rate(self.samp_rate)

 def get_gain(self):

 return self.gain

 def set_gain(self, gain):

 self.gain = gain

 def get_delay_length(self):

 return self.delay_length

 def set_delay_length(self, delay_length):

 self.delay_length = delay_length

 def get_amplitude(self):

 return self.amplitude

 def set_amplitude(self, amplitude):

33

 self.amplitude = amplitude

 self.analog_sig_source_x_0.set_amplitude(self.amplitude)

if __name__ == '__main__':

 parser = OptionParser(option_class=eng_option, usage="%prog: [options]")

 (options, args) = parser.parse_args()

 tb = top_block()

 tb.Run(True)

Clutter.py

#!/usr/bin/env python

from gnuradio import blocks

from gnuradio import eng_notation

from gnuradio import gr

from gnuradio import uhd

from gnuradio.eng_option import eng_option

from gnuradio.gr import firdes

from gnuradio.wxgui import forms

from grc_gnuradio import wxgui as grc_wxgui

from optparse import OptionParser

import wx

class top_block(grc_wxgui.top_block_gui):

 def __init__(self):

 grc_wxgui.top_block_gui.__init__(self, title="Top Block")

 _icon_path = "/usr/share/icons/hicolor/32x32/apps/gnuradio-grc.png"

 self.SetIcon(wx.Icon(_icon_path, wx.BITMAP_TYPE_ANY))

 ##

 # Variables

 ##

 self.variable_slider_2 = variable_slider_2 = .1

 self.variable_slider_1 = variable_slider_1 = 32

 self.variable_slider_0 = variable_slider_0 = 0

 self.samp_rate = samp_rate = 21e6

 self.gain = gain = variable_slider_1

 self.delay_length = delay_length = variable_slider_0

 self.amplitude = amplitude = variable_slider_2

 ##

34

 # Blocks

 ##

 _variable_slider_2_sizer = wx.BoxSizer(wx.VERTICAL)

 self._variable_slider_2_text_box = forms.text_box(

 parent=self.GetWin(),

 sizer=_variable_slider_2_sizer,

 value=self.variable_slider_2,

 callback=self.set_variable_slider_2,

 label="Chirp Amplitude",

 converter=forms.float_converter(),

 proportion=0,

)

 self._variable_slider_2_slider = forms.slider(

 parent=self.GetWin(),

 sizer=_variable_slider_2_sizer,

 value=self.variable_slider_2,

 callback=self.set_variable_slider_2,

 minimum=0,

 maximum=1,

 num_steps=10,

 style=wx.SL_HORIZONTAL,

 cast=float,

 proportion=1,

)

 self.Add(_variable_slider_2_sizer)

 _variable_slider_1_sizer = wx.BoxSizer(wx.VERTICAL)

 self._variable_slider_1_text_box = forms.text_box(

 parent=self.GetWin(),

 sizer=_variable_slider_1_sizer,

 value=self.variable_slider_1,

 callback=self.set_variable_slider_1,

 label="Output Gain",

 converter=forms.float_converter(),

 proportion=0,

)

 self._variable_slider_1_slider = forms.slider(

 parent=self.GetWin(),

 sizer=_variable_slider_1_sizer,

 value=self.variable_slider_1,

 callback=self.set_variable_slider_1,

 minimum=0,

 maximum=32,

 num_steps=31,

 style=wx.SL_HORIZONTAL,

35

 cast=float,

 proportion=1,

)

 self.GridAdd(_variable_slider_1_sizer, 12, 10, 1, 9)

 _variable_slider_0_sizer = wx.BoxSizer(wx.VERTICAL)

 self._variable_slider_0_text_box = forms.text_box(

 parent=self.GetWin(),

 sizer=_variable_slider_0_sizer,

 value=self.variable_slider_0,

 callback=self.set_variable_slider_0,

 label="Delay Length",

 converter=forms.int_converter(),

 proportion=0,

)

 self._variable_slider_0_slider = forms.slider(

 parent=self.GetWin(),

 sizer=_variable_slider_0_sizer,

 value=self.variable_slider_0,

 callback=self.set_variable_slider_0,

 minimum=0,

 maximum=710000,

 num_steps=1000,

 style=wx.SL_HORIZONTAL,

 cast=int,

 proportion=1,

)

 self.GridAdd(_variable_slider_0_sizer, 10, 10, 1, 9)

 self.uhd_usrp_sink_0 = uhd.usrp_sink(

 device_addr="",

 stream_args=uhd.stream_args(

 cpu_format="fc32",

 channels=range(1),

),

)

 self.uhd_usrp_sink_0.set_samp_rate(samp_rate)

 self.uhd_usrp_sink_0.set_center_freq(2.28e9, 0)

 self.uhd_usrp_sink_0.set_gain(gain, 0)

 self.blocks_file_source_0 = blocks.file_source(gr.sizeof_gr_complex*1,

"/home/ubuntu/radar2.capture", True)

 ##

 # Connections

 ##

 self.connect((self.blocks_file_source_0, 0), (self.uhd_usrp_sink_0, 0))

36

 def get_variable_slider_2(self):

 return self.variable_slider_2

 def set_variable_slider_2(self, variable_slider_2):

 self.variable_slider_2 = variable_slider_2

 self._variable_slider_2_slider.set_value(self.variable_slider_2)

 self._variable_slider_2_text_box.set_value(self.variable_slider_2)

 self.set_amplitude(self.variable_slider_2)

 def get_variable_slider_1(self):

 return self.variable_slider_1

 def set_variable_slider_1(self, variable_slider_1):

 self.variable_slider_1 = variable_slider_1

 self.set_gain(self.variable_slider_1)

 self._variable_slider_1_slider.set_value(self.variable_slider_1)

 self._variable_slider_1_text_box.set_value(self.variable_slider_1)

 def get_variable_slider_0(self):

 return self.variable_slider_0

 def set_variable_slider_0(self, variable_slider_0):

 self.variable_slider_0 = variable_slider_0

 self.set_delay_length(self.variable_slider_0)

 self._variable_slider_0_slider.set_value(self.variable_slider_0)

 self._variable_slider_0_text_box.set_value(self.variable_slider_0)

 def get_samp_rate(self):

 return self.samp_rate

 def set_samp_rate(self, samp_rate):

 self.samp_rate = samp_rate

 self.uhd_usrp_sink_0.set_samp_rate(self.samp_rate)

 def get_gain(self):

 return self.gain

 def set_gain(self, gain):

 self.gain = gain

 self.uhd_usrp_sink_0.set_gain(self.gain, 0)

 def get_delay_length(self):

37

 return self.delay_length

 def set_delay_length(self, delay_length):

 self.delay_length = delay_length

 def get_amplitude(self):

 return self.amplitude

 def set_amplitude(self, amplitude):

 self.amplitude = amplitude

if __name__ == '__main__':

 parser = OptionParser(option_class=eng_option, usage="%prog: [options]")

 (options, args) = parser.parse_args()

 tb = top_block()

 tb.Run(True)

DRFM.py

#!/usr/bin/env python

from gnuradio import blocks

from gnuradio import eng_notation

from gnuradio import gr

from gnuradio import uhd

from gnuradio import window

from gnuradio.eng_option import eng_option

from gnuradio.gr import firdes

from gnuradio.wxgui import forms

from gnuradio.wxgui import waterfallsink2

from grc_gnuradio import wxgui as grc_wxgui

from optparse import OptionParser

import wx

class top_block(grc_wxgui.top_block_gui):

 def __init__(self):

 grc_wxgui.top_block_gui.__init__(self, title="Top Block")

 _icon_path = "/usr/share/icons/hicolor/32x32/apps/gnuradio-grc.png"

 self.SetIcon(wx.Icon(_icon_path, wx.BITMAP_TYPE_ANY))

 ##

38

 # Variables

 ##

 self.variable_slider_1 = variable_slider_1 = 32

 self.variable_slider_0 = variable_slider_0 = 0

 self.samp_rate = samp_rate = 21e6

 self.gain = gain = variable_slider_1

 self.delay_length = delay_length = variable_slider_0

 ##

 # Blocks

 ##

 self.wxgui_waterfallsink2_0_0 = waterfallsink2.waterfall_sink_c(

 self.GetWin(),

 baseband_freq=0,

 dynamic_range=100,

 ref_level=0,

 ref_scale=2.0,

 sample_rate=samp_rate,

 fft_size=512,

 fft_rate=15,

 average=False,

 avg_alpha=None,

 title="Output Waterfall Plot",

)

 self.GridAdd(self.wxgui_waterfallsink2_0_0.win, 0, 10, 10, 10)

 self.wxgui_waterfallsink2_0 = waterfallsink2.waterfall_sink_c(

 self.GetWin(),

 baseband_freq=0,

 dynamic_range=100,

 ref_level=0,

 ref_scale=2.0,

 sample_rate=samp_rate,

 fft_size=512,

 fft_rate=15,

 average=False,

 avg_alpha=None,

 title="Input Waterfall Plot",

)

 self.GridAdd(self.wxgui_waterfallsink2_0.win, 0, 0, 10, 10)

 _variable_slider_1_sizer = wx.BoxSizer(wx.VERTICAL)

 self._variable_slider_1_text_box = forms.text_box(

 parent=self.GetWin(),

 sizer=_variable_slider_1_sizer,

 value=self.variable_slider_1,

39

 callback=self.set_variable_slider_1,

 label="Output Gain",

 converter=forms.float_converter(),

 proportion=0,

)

 self._variable_slider_1_slider = forms.slider(

 parent=self.GetWin(),

 sizer=_variable_slider_1_sizer,

 value=self.variable_slider_1,

 callback=self.set_variable_slider_1,

 minimum=0,

 maximum=32,

 num_steps=31,

 style=wx.SL_HORIZONTAL,

 cast=float,

 proportion=1,

)

 self.GridAdd(_variable_slider_1_sizer, 12, 10, 1, 9)

 _variable_slider_0_sizer = wx.BoxSizer(wx.VERTICAL)

 self._variable_slider_0_text_box = forms.text_box(

 parent=self.GetWin(),

 sizer=_variable_slider_0_sizer,

 value=self.variable_slider_0,

 callback=self.set_variable_slider_0,

 label="Delay Length",

 converter=forms.int_converter(),

 proportion=0,

)

 self._variable_slider_0_slider = forms.slider(

 parent=self.GetWin(),

 sizer=_variable_slider_0_sizer,

 value=self.variable_slider_0,

 callback=self.set_variable_slider_0,

 minimum=0,

 maximum=710000,

 num_steps=1000,

 style=wx.SL_HORIZONTAL,

 cast=int,

 proportion=1,

)

 self.GridAdd(_variable_slider_0_sizer, 10, 10, 1, 9)

 self.uhd_usrp_source_0 = uhd.usrp_source(

 device_addr="",

 stream_args=uhd.stream_args(

40

 cpu_format="fc32",

 channels=range(1),

),

)

 self.uhd_usrp_source_0.set_samp_rate(samp_rate)

 self.uhd_usrp_source_0.set_center_freq(2.28e9, 0)

 self.uhd_usrp_source_0.set_gain(0, 0)

 self.uhd_usrp_sink_0 = uhd.usrp_sink(

 device_addr="",

 stream_args=uhd.stream_args(

 cpu_format="fc32",

 channels=range(1),

),

)

 self.uhd_usrp_sink_0.set_samp_rate(samp_rate)

 self.uhd_usrp_sink_0.set_center_freq(2.28e9, 0)

 self.uhd_usrp_sink_0.set_gain(gain, 0)

 self.gr_file_source_0_0 = gr.file_source(gr.sizeof_gr_complex*1,

"/home/ubuntu/radar-rx3.capture", True)

 self.gr_file_source_0 = gr.file_source(gr.sizeof_gr_complex*1,

"/home/ubuntu/radar-rx3.capture", True)

 self.gr_delay_0_0 = gr.delay(gr.sizeof_gr_complex*1, delay_length)

 self.blocks_multiply_xx_0 = blocks.multiply_vcc(1)

 ##

 # Connections

 ##

 self.connect((self.uhd_usrp_source_0, 0), (self.wxgui_waterfallsink2_0, 0))

 self.connect((self.gr_file_source_0_0, 0), (self.gr_delay_0_0, 0))

 self.connect((self.gr_file_source_0, 0), (self.blocks_multiply_xx_0, 0))

 self.connect((self.gr_delay_0_0, 0), (self.blocks_multiply_xx_0, 1))

 self.connect((self.blocks_multiply_xx_0, 0), (self.uhd_usrp_sink_0, 0))

 self.connect((self.blocks_multiply_xx_0, 0), (self.wxgui_waterfallsink2_0_0, 0))

 def get_variable_slider_1(self):

 return self.variable_slider_1

 def set_variable_slider_1(self, variable_slider_1):

 self.variable_slider_1 = variable_slider_1

 self.set_gain(self.variable_slider_1)

 self._variable_slider_1_slider.set_value(self.variable_slider_1)

 self._variable_slider_1_text_box.set_value(self.variable_slider_1)

41

 def get_variable_slider_0(self):

 return self.variable_slider_0

 def set_variable_slider_0(self, variable_slider_0):

 self.variable_slider_0 = variable_slider_0

 self.set_delay_length(self.variable_slider_0)

 self._variable_slider_0_slider.set_value(self.variable_slider_0)

 self._variable_slider_0_text_box.set_value(self.variable_slider_0)

 def get_samp_rate(self):

 return self.samp_rate

 def set_samp_rate(self, samp_rate):

 self.samp_rate = samp_rate

 self.wxgui_waterfallsink2_0.set_sample_rate(self.samp_rate)

 self.wxgui_waterfallsink2_0_0.set_sample_rate(self.samp_rate)

 self.uhd_usrp_sink_0.set_samp_rate(self.samp_rate)

 self.uhd_usrp_source_0.set_samp_rate(self.samp_rate)

 def get_gain(self):

 return self.gain

 def set_gain(self, gain):

 self.gain = gain

 self.uhd_usrp_sink_0.set_gain(self.gain, 0)

 def get_delay_length(self):

 return self.delay_length

 def set_delay_length(self, delay_length):

 self.delay_length = delay_length

 self.gr_delay_0_0.set_delay(self.delay_length)

if __name__ == '__main__':

 parser = OptionParser(option_class=eng_option, usage="%prog: [options]")

 (options, args) = parser.parse_args()

 tb = top_block()

 tb.Run(True)

42

Radar.m

function userinput

sprintf('How would you like to process the data?')

prompt = '1 for RealTime Audio Processing 2 for First acquiring data and then processing';

result = input(prompt);

if result == 1

 final_workingrealtime;

userinput;

elseif result == 2

 notrealtime;

userinput;

else

 sprintf('Undefined user input')

end

%MIT IAP Radar Course 2011

%Resource: Build a Small Radar System Capable of Sensing Range, Doppler,

%and Synthetic Aperture Radar Imaging

%

%Gregory L. Charvat

%Om Kapoor

%Hunter Scott

%Process Range vs. Time Intensity (RTI) plot

%NOTE: set up-ramp sweep from 2-3.2V to stay within ISM band

%change fstart and fstop bellow when in ISM band

function final_workingrealtime

clear all;

close all;

pause on

%read the raw data .wave file here

Yt = audiorecorder(16000,16,2);

% Y = wavrecord(44100*5,44100,2);

FS = 16000;

NBITS = 16;

%constants

c = 3E8; %(m/s) speed of light

%radar parameters

43

Tp = 20E-3; %(s) pulse time

N = Tp*FS; %# of samples per pulse

fstart = 2260E6; %(Hz) LFM start frequency for example

fstop = 2590E6; %(Hz) LFM stop frequency for example

%fstart = 2402E6; %(Hz) LFM start frequency for ISM band

%fstop = 2495E6; %(Hz) LFM stop frequency for ISM band

BW = fstop-fstart; %(Hz) transmti bandwidth

f = linspace(fstart, fstop, N/2); %instantaneous transmit frequency

x = 0;

%range resolution

rr = c/(2*BW);

max_range = rr*N/2;

record(Yt);

pause(8)

n = 1;

%%%%

%Find the size of

%%%

while(1)

Ybar = getaudiodata(Yt, 'single');

sz = size(Ybar);

%the input appears to be inverted

%Method 2

if x == 0

 Y = Ybar;

 x = 1;

else

 Y = [Y(size(Ybar,1)-5000:size(Y,1),:);Ybar(5000:size(Ybar,1),:)];

end

trig = -1*Y(:,1);

s = -1*Y(:,2);

%parse the data here by triggering off rising edge of sync pulse

count = 0;

thresh = 0;

start = (trig > thresh);

for ii = 100:(size(start,1)-N)

44

 if start(ii) == 1 & mean(start(ii-11:ii-1)) == 0

 %start2(ii) = 1;

 count = count + 1;

 sif(count,:) = s(ii:ii+N-1);

 time(count) = ii*1/FS;

 end

end

%subtract the average

ave = mean(sif,1);

for ii = 1:size(sif,1);

 sif(ii,:) = sif(ii,:) - ave;

end

zpad = 8*N/2;

figure(20);

sif2 = sif(2:size(sif,1),:)-sif(1:size(sif,1)-1,:);

v = ifft(sif2,zpad,2);

S=v;

R = linspace(0,max_range,zpad);

for ii = 1:size(S,1)

 %S(ii,:) = S(ii,:).*R.^(3/2); %Optional: magnitude scale to range

end

S = dbv(S(:,1:size(v,2)/2));

m = max(max(S));

imagesc(R,time,S-m,[-80, 0]);

colorbar;

ylabel('time (s)');

xlabel('range (m)');

title('RTI with 2-pulse cancelor clutter rejection');

record(Yt)

pause(2)

stop(Yt)

end

end

function notrealtime

%read the raw data .wave file here

Y = wavrecord(16000*10,16000,2);

% Y = wavrecord(44100*5,44100,2);

FS = 16000;

NBITS = 16;

45

%constants

c = 3E8; %(m/s) speed of light

%radar parameters

Tp = 20E-3; %(s) pulse time

N = Tp*FS; %# of samples per pulse

fstart = 2260E6; %(Hz) LFM start frequency for example

fstop = 2590E6; %(Hz) LFM stop frequency for example

%fstart = 2402E6; %(Hz) LFM start frequency for ISM band

%fstop = 2495E6; %(Hz) LFM stop frequency for ISM band

BW = fstop-fstart; %(Hz) transmti bandwidth

f = linspace(fstart, fstop, N/2); %instantaneous transmit frequency

x = 0;

%range resolution

rr = c/(2*BW);

max_range = rr*N/2;

trig = -1*Y(:,1);

s = -1*Y(:,2);

%parse the data here by triggering off rising edge of sync pulse

count = 0;

thresh = 0;

start = (trig > thresh);

for ii = 100:(size(start,1)-N)

 if start(ii) == 1 & mean(start(ii-11:ii-1)) == 0

 %start2(ii) = 1;

 count = count + 1;

 sif(count,:) = s(ii:ii+N-1);

 time(count) = ii*1/FS;

 end

end

%subtract the average

ave = mean(sif,1);

for ii = 1:size(sif,1);

 sif(ii,:) = sif(ii,:) - ave;

end

zpad = 8*N/2;

figure(20);

sif2 = sif(2:size(sif,1),:)-sif(1:size(sif,1)-1,:);

v = ifft(sif2,zpad,2);

S=v;

R = linspace(0,max_range,zpad);

for ii = 1:size(S,1)

 %S(ii,:) = S(ii,:).*R.^(3/2); %Optional: magnitude scale to range

46

end

S = dbv(S(:,1:size(v,2)/2));

m = max(max(S));

imagesc(R,time,S-m,[-80, 0]);

colorbar;

ylabel('time (s)');

xlabel('range (m)');

title('RTI with 2-pulse cancelor clutter rejection');

end

end

radartracker.m

img = imread('plot.png');

%search the intensity of the red layer of the array (im[0,:,:])

imshow(img);

imgred = img;

imshow(imgred);

imgred(:,:,2) = 0;

imshow(imgred);

imgred(:,:,3) = 0;

imshow(imgred)

imgred = rgb2gray(imgred);

top = 15;% pixel

bottom =25;%pixels from bottom

margin_left = 40;%pixel from left to right

margin_right = 5;%pixel from right to left

J = imgred(top:size(imgred,1) - bottom , margin_left:size(imgred,2) - margin_right);

imshow(J)

vi = (J > 70);

imshow(vi)

47

Appendix E – Circular Antenna Design

Antenna Geometry, scaled by 2.5

Return Loss

48

Input Impedance

3D Left Hand Radiation Pattern

3D Right Hand Radiation Pattern

49

2D Left Hand Gain

2D Right Hand Gain

