

What we're covering

- Basic physics and math of a phased array
- What you can do with a phased array
- Building your own
- Design considerations

Who I am

- Hunter Scott
- Director of Hardware Engineering at Reach Labs
- 10 years of hardware design

What's phase?

 $A*sin(\omega t + \boldsymbol{\varphi})$

What isn't a phased array?

Mechanical steering can have downsides....

Mark Hickel

Mark Hickel

Big phased arrays

Sea-based X band radar

Big phased arrays

Eglin AFB Site C-6

Big phased arrays

PATRIOT missile

An antenna array that allows phase control over each antenna

Passive

One frequency source, each element has a phase shifter

Active

Each element has a VCO and phase shifter. More expensive, better performance.

Active

Active

Active

Transmit/Receive switching

Circulator:

Switch:

- How do you know when to emit from each port to get them to line up right?
- Principle of Reciprocity the transmit case is the same as the receive case
- So let's look at the receiving version, since it's a little easier to think about, and it's exactly the same equations for transmitting.

Math! d d

Math! θ d

$$au = rac{d * \sin heta}{c}$$

$$\tau = \frac{d * \sin \theta}{c}$$

Math!

$$au = rac{d * \sin heta}{c}$$

$$y(t) = s(t) + s(t - \tau) + s(t - 2\tau) + \dots$$

Math!

Example: isotropic elements in a line

$$\Delta \phi = rac{360^\circ * d * \sin \Theta_s}{\lambda}$$

$$(\Delta \phi * n - 1) \mod 360^\circ = ext{Phase to steer out of antenna n to steer to angle } \Theta_s$$

Math!

This talk is only 35 minutes, so please use ArrayTool

https://zinka.github.io/arraytool/

- Antennas
- VCO
- Splitters
- Amplifiers
- Some way to control phase

Antennas

Two most common are patch and Vivaldi

VCO

(Voltage controlled oscillator)

Consider output power and frequency range

Example Minicircuits part: ZX95-2500WA-S+

Splitters

Can use components or a Wilkinson divider in microstrip

Example Minicircuits part: ZN2PD-9G-S+

Amplifiers (PA/LNA)

Consider distortion, bandwidth, gain, power, stability

Minicircuits PA/LNA example part: ZX60-P103LN+ (can be used for both!)

Something to shift phase

-Phase shifter! But they're expensive.

-IQ modulator!

Example IQ modulator dev board: OM7944 (from NXP)

Wait, what's I and Q again?

In phase and quadrature. Can represent any signal with those two things.

More info: https://www.youtube.com/watch?v=RHFZUqUM8DY (W2AEW!)

Design considerations

- Start small
- Watch out for feedback/coupling
- Watch out for backplane radiation from antennas into electronics
- Power
- Thermals
- Isolation (especially for TX/RX)
- Phase shift linearity over frequency
- SMA vs RP-SMA

Design considerations

Grating lobes

When you steer too far to one side and the beam appears on the other side.

Some links to help kickstart your project:

https://coherent-receiver.com/getting-started

http://glcharvat.com/Dr. Gregory L. Charvat Projects/S-Band MIMO Phased Array Radar.html

Xmicrowave:

Rapid prototyping for RF

Relevance

 5G is going to make all of this way easier. More integrated chips.

Fun activities:

- Build your own SAR!
- Do spatial multiplexing experiments!
- Use magnetrons and precision cook your steaks!

A new project

Want to help build a phased array to make it easier for people to learn and experiment?

I need:

- An FPGA person, experience with RF would be great
- GNURadio integrator expert
- Maybe someone to help with some board design

You will get:

- No money
- The goodwill of dozens of people
- The joy of being a bad influence on today's impressionable youth by getting them interested in RF

Still in the early stages

Thank you!

Slides with links and part numbers:

http://hscott.net/PhasedArray

Contact:

hunter@hscott.net